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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Human or Animal ears are able to perceive the sound or the direction that a sound is 

coming from. The ears can recognize the direction of sound by the combination of different 

signals that are arriving at them. For instance, consider a situation in a cocktail party wherein the 

person is trying to make an attempt to focus on a single voice among difference conversations 

along with some music and background noise. The party effect explains about the focus that one 

has on a single person talking and ignoring the mixture of other conversations and background 

noise, which are of different frequencies. As mentioned above, human/animal ears have 

extraordinary ability that enables them to talk and catch a particular sound at the same time in a 

dissonance of different sounds.  

Our ears have exceptional ability to catch any type of sound in a disturbed environment. 

For example, if we consider cocktail party, we pay attention to a single talker avoiding the 

unwanted sources surrounding us. If someone in the party room calls out our name, our ears 

immediately switch over to the direction of that sound and respond to it within no time. This is 

because it has been found that [1] the acoustic source, on which the human ears concentrate, is 

three times louder than the ambient noise. This phenomenon happens irrespective of number of 

sources surrounding us, making different sounds simultaneously. The ears can detect all the 

sounds of different frequencies. So, it can be stated that the ears act as a Band pass filter and it 

can concentrate on one particular sound of any desired frequency ignoring all other sounds. In 

general, the auditory system follows three steps in detecting sound: 
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1. It detects the sound above a certain threshold frequency or level. 

2. It resolves the sound in to different frequencies bands. 

3. Depending on above two points, it calculates the phase and direction of the sound. 

             After learning about all these capabilities of a human ear, there arises an eagerness to 

study about the phenomenon that our ear follows for sound separation.  

Considering the case in a cocktail party, we can think of developing a technique to locate 

the sources of our choice in any kind of environment. This type of technique can be built using a 

number of microphones, data acquisition device and a laptop to see the results. This system can 

be used to locate and extract any particular sound from a mixture of different sounds which are 

being produced by several other sources simultaneously. 

The location of the sources and separation has become an important field in recent years. 

With growing population and technology, one needs to cope up with the technology with day to 

day basis. There are many cases where the sound  source localization and extraction of sound is 

used. For example, consider a case in a mob where police officers need to handle such a big 

crowd. There is every possibility of gunshots being fired from both the ends. The investigation 

then  try to track the exact location from where that gunshots were fired. The exact location of 

the accident has to be known as to continue with the investigation. The extraction of the sound is 

also very important in many cases. Many industries nowadays are using this technique for 

quality control inspection on the shop floor by pin pointing the machineries that make more 

sound or are less efficient. The above technology is used to remove the back ground noise from 

the mixture of different sounds.  
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1.2 Problem definition 

In the examples mentioned above regarding Cocktail party, Mob and Industrial 

applications, there is a need to detect the sound and extract a particular sound. But in all these 

cases, there is no prior knowledge of sources, the sounds or the characteristics of the 

surroundings. This method where the sound is extracted without any knowledge is known as 

Blind source separation [2, 3, 4, 5]. This is one of the challenging tasks in sound separation. As 

mentioned above, there is absolutely no knowledge about the surroundings or the sources. Every 

source might produce sound with different amplitude and each receiver or the microphones can 

get multiple multipaths from the sources. There might be reverberations, diffractions or sound 

reflections that might change the entire situation. The sound might get reflected from a chair, 

table, wall etc.  

In this thesis a new technology is developed that will enable us to capture the exact 

location of multiple sources irrespective of any surroundings. We use a technology called Short-

time source localization and separation to locate the exact locations of the sources and extract the 

target acoustic signals from the mixed signals that are measured directly. 
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Figure 1.1: Simplest mixing model 

 Consider a simplest case shown in Figure 1.1. It shows two sources and two receivers. 

The signals from both sources are captured by  receivers. Now both the receivers have mixture of 

two signals from two sources. Then the Blind source separation is used to separate both the 

signals from the mixture.  

 

1.3 Goals and objectives of the thesis 

The review explained in Section 1.2 indicates that new technology has to be developed 

and implemented in order to address the issues regarding source locations and separation. We 

should be in a position to arbitrarily locate any sources and extract the desired signal from the 

measured signal. This research addresses the above problems by developing a new technique to 

locate sound sources in real time and to separate the target signals from any mixed data. 
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1.4 Thesis Organization 

 The thesis is organized as follows. In chapter 2, we discuss various techniques used for 

source localization such the theory of Triangulation, Beam-forming and Time-reversal. Cross-

Correlation, Auto-Correlation functions are also discussed. 

 In chapter 3, the mathematical formulation to link Auto and Cross correlation are 

mentioned which are used to find the accurate source localization. The multipath functions 

between the source and the receiver are presented in some detail. 

 In chapter 4, separation of target sound from directly measured mixed signals is 

discussed. A new technology known as Short-time source localization and separation is 

discussed along with various concerned  parameters such as Fourier transform, Short time 

Fourier transform and Window function. 

 In chapter 5, the experimental validations are carried out in Acoustics, Vibrations and 

Noise Control (AVNC) lab, Wayne State University. The source localization is carried out using 

Auto Correlation and Cross Correlation functions. Error analysis is performed by comparing the 

localization results with the benchmark values obtained from 3-D digitizer. We then carry out the 

process for separation of signals using SLAS technique and three different cases are presented 

along with their time-domain and Spectrogram graphs. 

 In chapter 6, we draw conclusions and discuss the significance of the results obtained and 

finally in chapter 7, future work that could be carried out in this field is discussed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

The algorithms used for source localization used multiple receivers that are microphones 

in this thesis. They are used to detect the signal emitted by different sources. 

In this thesis, a different approach for source separation is developed, which enables one 

to separate mixtures of any type of frequency domain signals. Experimental validations of the 

proposed source localization method, source separation are conducted in the Acoustics, 

Vibration, and Noise Control (AVNC) laboratory. 

2.1 Sound sources localization 

There are currently three methodologies developed for the sound source localization 

problem, namely, triangulation [6, 7, 8], beamforming [9, 10, 11], and time reversal [12, 13, 14] 

algorithms. These methodologies are reviewed below. 

2.1 (a) Triangulation 

 

Triangulation is commonly used for source localization and most triangulation 

applications are based on intersection of the bearing direction to locate a source on a two-

dimensional plane. It works on an assumption that the sound wave travels between two points in 

a straight line. For any impulsive sound source, this method works best in Time difference of 

arrival (TDOA) estimation. As the sound wave travels in straight path in an impulse sound, we 

get single sharp peak in the cross correlation function. But in case of arbitrary waveforms, where 

you have multiple sound reflection and diffraction, this method can’t be used as the number of 

peaks in the cross correlation function is more than one. There is no possible way to know which 

peak to be used for TDOA estimation unless we use Auto- Correlation functions. The number of 
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sensors needed in this method is typically small compared to other methods. 

2.1 (b) Beamforming 

 

Beamforming is a method which assumes that the sound source is at a far distance so that 

incident wave front is planar. Beamforming employs delay and sum algorithms to specify the 

direction of an incident sound wave travelling in space. This can be explained with an example 

of two dimensional array of microphones mounted at a fixed position. The incident sound wave 

at an angle impinges on the microphone array. This angle of incidence will produce different 

times of arrival (TOA). The signals in all channels are delayed until they are all in phase. These 

signals are then summed up to form a peak which gives the source location. The drawback using 

this method is that range of a target cannot be determined and also the microphones array has to 

be inclined towards the source which needs to be located which is not feasible in all the cases. 

2.1 (c) Time reversal 

 

Compared to the above methods, time reversal (TR) method is relatively simple. It 

employs a different approach which is playing back the time reversed signals which are emitted 

from the same point and then summing them up in space which will lead to the exact source 

location. The method is relatively simple and has good applications in the field of underwater 

acoustics and reverberant conditions. This method is used whenever the Signal to Noise ratio is 

low.  

The main disadvantage of TR is that numerical computations are much more time 

consuming than the other two methodologies. This is because TR needs to scan every point in 

space to find the source. 
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2.2 Cross-correlation 

 The time delay of a signal between two microphones is the difference between the times 

of arrival of the signal at the two microphones. We studied the geometry of the problem by 

assuming that we know the time delay of the source between any pair of microphones. Cross 

correlation [15, 16, 17, 18] is a routine signal processing technique that can be applied to find 

such time delays by using the two copies of a signal registered at a pair of microphones as inputs. 

A cross correlation routine outputs set of cross correlation coefficients, which correspond to 

different time delays. These coefficients are sum of products of corresponding portions of the 

signals, as one signal slides on top of another one. Each cross correlation coefficient corresponds 

to a particular possible time delay of a signal between the two microphones. The maximum cross 

correlation coefficient indicates the portions of the signals with the maximum correlation. 

Therefore, the maximum coefficient can be used to deduce the time delay between the two 

copies of the same signal recorded by a pair of microphones. Accurate computation of delay is 

the basis for final source location with high accuracy. In the first step, time delay of arrival is 

estimated for each pair of microphones.  

Assume time domain signals x(t) and y(t) are observed at two measurement positions. 

The cross correlation of these two signals Rxy(t) can be expressed as: 

         




   dtyxtytxtRxy

                                   (2.1)

 

where the symbol “ ” indicate the complex conjugate.  

 Consider a case in an anechoic chamber with two micro-phones capturing the time 

domain signals from two different micro-phones kept at a distance of 1m from each other. 

Figure: 2.1 shows the cross-correlation between two microphones that captured the time domain 
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signals. 

 

Figure: 2.1 Cross- correlations between two channels in an Anechoic Chamber. 

 In practice, the environment is non-ideal and inferring background noise can strongly 

affect the cross correlation results, therefore fluctuation or random peaks may happen in the 

cross correlation graphs. The cross correlation method  is applicable to most of the sound types, 

including transient, continuous, broadband, and narrowband sounds. However, it cannot be used 

in the cases of a single frequency and its multiple frequencies, because the peaks in cross 

correlation results for these cases are neither significant nor reliable. 

Now consider the above case in different environment where there are lots of reflections 

and two microphones separated by 1m are capturing the time domain signals from a stationary 
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source. The plot below shows the cross correlation between the two microphones. 

 

 

Figure: 2.2 Cross- correlations between two channels outside an Anechoic Chamber. 

 In Figure: 2.2 it can be seen clearly that the cross correlation peak or the Time difference 

of arrival (TDOA) [19] which is the important parameter for sound source localization cannot be 

determined accurately. There is every possibility of choosing the wrong peak in calculating the 

TDOA. As a result, a new technology has been developed which enables us to choose the exact 

peak in calculation the TDOA which in-turn localizes the source correctly. The algorithm and 

TDOA estimation is discussed below. 
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2.3 Auto- correlation 

 As shown in Figure: 2.2, it is impossible to tell which peak is to be chosen to calculate 

the TDOA when the cross correlation is taken between the output of two widely separated 

receivers. There might be different multipath [20, 21, 22, 23, 24] with amplitudes which make it 

more difficult to choose the exact peak in calculating the TDOA. In such a situation auto-

correlation functions gives sufficient information to identify the relative arrival times of all the 

multipaths at each receiver. Cross correlation is used to estimate the arrival time of a signal 

between two microphones. However, if there are echoes and  reflections which reach the receiver 

along with the direct path, there are many peaks in the cross-correlation function  

 

Figure 2.3 : Signals from Man and Speaker to the receiver in AVNC lab 

 Figure: 2.3 shows a snap shot from Acoustics, vibration and Noise control Laboratory 

where the  Man is talking and the music is been played on the speaker beside him. There are six 
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microphones which act as receivers and each microphone captures the signals from the Man and 

the speaker. For simplicity, only two microphones are shown in the Figure 2.3 receiving the 

signals from two sources. Apart from the straight path between the source and receiver, the 

signals go through many reverberations and reflections before reaching the receivers. As seen in 

the Figure: 2.3, the signal from the Man reached the two Microphones is at different time 

interval. Apart from that the Man’s voice reflects from chair, table, glass and the wall and then 

reaches the two microphones. Assume same case with the signal from the speaker. If we consider 

Microphone 1 and 2, there are three multipaths from Man’s voice to these two speakers. 

Therefore the number of cross correlation peaks between these two receivers is 3 x 3 = 9. In 

many cases, the first arrival, which may be nearly straight, may be the only useful path for 

localization since the geometry of the other paths originating from echoes may be difficult to 

estimate. Cross-correlation does not tell us which peak to choose. To address this issue, a new 

method is used which identifies the cross-correlation peak corresponding to the difference in 

arrival time between the first arrivals at each receiver in the presence of echoes. Its numerical 

implementation is efficient. The key to unlocking the multipath problem with cross correlation is 

to consider the extra information residing in the reception’s auto-correlationfunctions. They often 

provide enough information to identify the relative arrival times of all the multipaths at each 

receiver and between receivers. 
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CHAPTER 3 

 

SOUND SOURCE LOCALIZATION 

3.1 Acoustic model based triangulation 

Sound source localization is based on acoustic modeling in this thesis. It has been 

assumed that in a free field, sound is generated by a point source and the amplitude of the sound 

wave follows the law of spherical spreading [25,33,35,36]. If we consider only one source, then 

the sound pressure can be written as [33,35,36]:  

    , ,
1 1rctf
r

p      (3.1) 

where p indicates the sound pressure at time t at geometric location    , ,r  in polar coordinates, 

r is the distance between the measurement and the source location, θ and φ are the polar and 

azimuthal angle of the measurement position with regard to the source and c is the speed of 

sound which can be calculated by the following equation:  

      CTc 6.0331
     

(3.2) 

where TC is the value of temperature in Celsius.  

Assuming that M microphones are employed in the prototype device of sound source 

localization [33,35,36], one can derive a general equation [33,35,36] that governs the distance 

from the source to the microphone in terms of TOA as follows: 

jsjs tcr                                                              (3.3) 

where the subscript j indicates the j
th

 microphone, s indicates the source, and rjs is the distance 

between the j
th

 microphone and the sound source. tjs is the TOA of measurement due to the time 

concern of the signal traveling in the media.  
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Similarly, TOA of the k
th

 microphone can be written as [33,35,36]: 

ksks tcr         (3.4) 

Using the Equation (3.4) minus Equation (3.3), thus 

 
jsksjsks ttcrr                                                 (3.5) 

This can be further simplified as: 

kijsjs tcrr                                                          (3.6) 

As mentioned in Chapter 2, it is impractical to model the sound which propagates along 

multipath because the environment is poorly known. Cross-correlation between a pair of micro-

phones contain multiple peaks from sources and it is difficult to estimate the time difference of 

arrival as the highest peak may not correspond to the difference in path lengths between the 

source and the microphones. Hence, a new technology is developed which uses the information 

from Auto-correlation function to determine the exact cross correlation peak which will help in 

source localization. 

3.2 Estimating travel time differences of first arrivals 

 Consider a source that emits a signal at time zero. Assume the call is described by s(t) 

where t is time. Therefore the signal emitted is at t=0. Sound reaches receiver j along    paths in 

space, called multipaths. The first arrival is often one that does not reflect from boundaries. It 

may be the path which most closely approximates the straight line between the source and the 

receiver, and thus be useful for localization. The remaining         [31] paths reach the 

receiver afterward either by undergoing refraction in the medium or by interacting with 

boundaries such as chairs, table, walls etc as shown in Figure: 2.3. 
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Assume the pressure field at receiver j is described by 

       ∑   
  

   
[ ] (    [ ])           (3.7) 

where the amplitude and travel time of the nth multipath are   [ ], and   [ ]respectively. The 

noise is  [ ]. 

The autocorrelation function ACF of the signal at channel j is 

        ∫                    (3.8) 

From Eq: 3.7 and Eq: 3.8 we get,  

        ∑

  

   

∑   

  

   

[ ]  [ ]∫  (    [ ])   (    [ ]   )    ∫               

(3.9) 

where the sample ACF between the noise and the signal, that is, ∫            , is assumed to be 

negligible [32]. 

 In order to see how to proceed to find the desired arrival time difference,   [ ]    [ ], 

consider the case with three multipaths at each channel j and k. The peaks occur in the 

ACF of channels j and k for 

        [   ]     [ ]    [ ]    (3.10) 

   [   ]     [ ]    [ ]    (3.11) 

   [   ]     [ ]    [ ]    (3.12) 

And  

   [   ]    [ ]    [ ]    (3.13) 

   [   ]     [ ]    [ ]    (3.14) 

   [   ]     [ ]    [ ]    (3.15) 

The peaks in CCF occurs in lags, 
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   [   ]     [ ]    [ ]    (3.16) 

   [   ]     [ ]    [ ]    (3.17) 

   [   ]     [ ]     [ ]    (3.18) 

   [   ]     [ ]    [ ]    (3.19) 

   [   ]     [ ]    [ ]    (3.20) 

   [   ]     [ ]    [ ]    (3.21) 

   [   ]     [ ]    [ ]    (3.22) 

   [   ]     [ ]    [ ]    (3.23) 

   [   ]     [ ]    [ ]    (3.24) 

 We can measure any lags that appear in the ACF and CCF, but for which lags do we 

know the associated pair of arrival times by inspection? There are four such lags [31, 32]. 

 They are 

    [  ,1]: the peak with most positive lag in the ACF of channel j. It is due to the arrival 

time difference between the first and last multipath. 

     [  ,1]: the peak with most positive lag in the ACF of channel k. It is due to the 

arrival time difference between the first and last multipath. 

     [1,  ]: the peak with most negative lag in the CCF occurs at the arrival time of the 

first multipath in channel j minus the arrival time of the last multipath in channel k. 

    [  ,1]: the peak with most positive lag in the CCF occurs at the arrival time of the last 

multipath in channel j minus the arrival time of the first multipath in channel k. The 

desired arrival time difference is given by a linear combination of subsets of these four 

lags. 
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The desired arrival time difference is given by a linear combination of subsets of these four lags. 

3.3 The relative arrival times in auto- and cross-correlation functions 

 Some or all of the paths of other than the first arrival may sometimes is useful for 

localizing signals and mapping the environment with tomography. 

3.3.1. Estimating Nj and Nk 

 

The maximum number of peaks [31, 32] in the ACF at positive lag is given by 

    
         

 
      (3.25) 

 This does not include the peak at zero lag. If there are less than   peaks, then more than 

one pair of multipath has similar arrival time differences. 

.The lower limit comes from the fact that      signals can never yield as many as   positively 

lagged peaks in the ACF. On the other hand, arrival time degeneracy leads to   
 <  .  

3.3.2. Estimating all the relative arrival times in the ACF and CCF 

 

 The most positively lagged peak in the ACF,     
 
  , is defined as   [  ]    [ ]. Now, 

       peaks require identification in the ACF of channel k. For    , the ACF of channel j 

has      as yet unidentified positively lagged peaks. We need estimates of the following 

     values of relative arrival times: 

  [ ]    [ ]      (3.26) 

  [ ]    [ ]      (3.27) 

  [ ]    [ ]      (3.28) 

  [    ]    [ ]     (3.29) 
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There are 

   
   

     

(  
    (    ))        

    (3.30) 

ways to pick these   -2 elements, without replacement, from a set of   -1 elements.  

The realization yields trial estimates for the relative arrival times in the ACF [31], 

  [ ]    [ ]      [    ]    (3.31) 

  [ ]    [ ]      [    ]    (3.32) 

  [ ]    [ ]      [    ]    (3.33) 

etc., 

  [    ]    [ ]      [ (    )]  (3.34) 

Now, for channel k, there are 

   
   

     

(  
          )        

    (3.35) 

ways to pick      elements, without replacement, from a set of      elements.  

Each realization yields trial estimates of the positively lagged peaks in the ACF, 

  [ ]    [ ]      [    ]    (3.36) 

  [ ]    [ ]      [    ]    (3.37) 

  [ ]    [ ]      [    ]    (3.38) 

etc., 

  [    ]    [ ]      [       ]  (3.39) 

 For each realization of relative arrival times for channels j and k, a realization is formed 

for the lags in the CCF. Since there are   and   realizations of relative times from channels j 

and k, respectively, there are 

              (3.40) 
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possible realizations of the lags in the CCF.  

The realization of trial lags is selected that best fits the measured lags in the CCF. 

This method identifies CCF lags using 

   [  ]    [ ]    [ ]    (3.41) 

as an anchor point about which other peaks are referenced. The peak in the CCF at  

  [ ]    [ ]need not even appear in the CCF, because there are independent estimates of its 

value.  

3.4 Error analysis on source localization algorithm [33,35,36] 

During the numerical simulation, different types of sound signals are tested, such as 

human voices, truck noise, chopper sound, machine noise, etc. The positions of the sound 

sources are chosen arbitrarily, and the mixed signals at six microphones are generated 

numerically obeying the spherical spreading law. 

To evaluate the accuracy of the sound source localization, error of localization result is 

defined as follows: 

%100
2

2






benchmark

benchmark

onlocalizati

r

rr
error 



   

(3.42) 

where r is the calculated vector result the source, and rbenchmark is the benchmark position of the 

sound source. 
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CHAPTER 4 

 

SOUND SOURCE SEPERATION 

 

 Any unwanted sound is noise and can be produced by many sources like a running 

engine, an operating machine tool, man’s vocal cord and so on.  Further, quickly varying 

pressure wave traveling through a medium is sound and when it travels through air, the 

atmospheric pressure varies periodically. Frequency of the sound is the number of pressure 

variations per second which is measured in Hertz (Hz) defined as cycles per second.  Pitch of 

sound wave is directly proportional to the frequency of wave, high frequency wave results in 

high pitched sound. Sounds produced by a whistle have much higher frequency than those 

produced by drums. 

 The human ear responds to variations in frequency of sound. The audible range of human 

ear falls between 20 Hz to 20 kHz. The human ear is less sensitive to sounds in the low 

frequencies compared to the higher frequencies with peak response around 2,500 to 3,000 Hz. 

Sound is generally characterized by pitch, loudness and quality.  The loudness of a sound 

depends on pressure variations. Pressure and pressure variations are expressed in Pascal (Pa). To 

express sound or noise in terms of Pa is quite inconvenient because we have to deal with 

numbers from as small as 20 to as big as 2,000,000,000. A simpler way is to use a logarithmic 

scale. The unit of measurement for loudness is the decibel (dB). As mentioned earlier, the human 

ear responds to sound is dependent on the frequency of the sound and this has led to the concept 

of weighting scales. The sound pressure levels for the lower frequencies and higher frequencies 

are reduced by certain amounts before they are being combined together to give one single sound 

pressure level value in a weighting scale. This value is designated as dB(A) and is often used as 

it reflects more accurately the frequency response of the human ear. A perceived soft noise has a 
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low dB or dB (A) value and a loud noise has a high one. 

4.1 Origin of sound separation problem 

 Much of the early work in the area of sound recognition and separation can be traced to 

problems faced by air traffic controllers in the early 1950's and this effect was first described 

(and named) by Colin Cherry in 1953 as part of psychoacoustics [26] . At that time, controllers 

received messages from pilots over loudspeakers in the control tower and hearing the intermixed 

voices of many pilots over a single loudspeaker made the controller's task of regulation of air 

traffic very difficult. Our ability to separate sounds from background noise is based on the 

characteristics of the sounds, such as the gender of the speaker, the direction from which the 

sound is coming, the pitch, or the speaking speed and this was revealed by Cherry, in 1953, who 

conducted perception experiments in which subjects were asked to listen to two different 

messages from a single loudspeaker at the same time and try to separate them.   

 Broadbent, in the 1950’s, concluded that human hearing is basically like a spectrum 

analyzer, that is, the ear resolves the spectral content of the pressure wave with respect to the 

phase of the signal by conducting dichotic listening experiments where subjects were asked to 

hear and separate different speech signals presented to each ear simultaneously (using 

headphones).  The difference in sound between the ears is a notable exception that provides a 

significant part of the directional sensation of sound and is called inter-aural phase difference.  
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4.2 Background Information about some of the Sound separation techniques: 

 Source separation has long been a topic of interest in engineering and many algorithms 

have been developed to perform separation of the sound sources. In 1994, the formulation of a 

sound separation technique known as Blind source separation (BSS) by Comon came into 

picture. Independent component analysis (ICA) was the name given to the algorithms that were 

developed to conduct the source separation. To highlight the fact that independent components 

were being separated from mixtures of signals the separation techniques were named ICA and 

also to emphasize a close link with the classical signal processing technique of Principal 

Component Analysis (PCA). 

 There was a rapid development of ICA algorithms following the Comon’s seminal paper. 

Based on a wide variety of principles algorithms were formulated, including mutual information, 

maximum likelihood and higher order statistics, to name just a few of the more popular 

approaches. All ICA algorithms are fundamentally similar despite such wide variety. ICA 

algorithms invariably obtain estimates of the independent signals by adopting a numerical 

approach (e.g. gradient descent) of maximizing an “independence metric”, i.e. a measure of the 

signals’ independence.  

 There came many different approaches to solving the source separation problem with the 

explosion of interest of many researchers in BSS and a great deal of progress has been made in 

showing that seemingly unrelated approaches were, in fact, equivalent. A major contribution to 

this movement was made by Bell and Sejnowski, by proposing a unifying framework for BSS 

based on information theoretic considerations [1] . BSS researchers soon showed the equivalence 

of many different approaches to BSS by continuing on the work of Bell and Sejnowski and 

research led to a convergence onto a small set of well understood principles, as the field of Blind 
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Source Separation matured. 

4.3 Restriction to the number of sources 

 Consider situations in which a number of sources emitting signals which interfere with 

one another occur, like a crowded room with many people speaking at the same time, interfering 

electromagnetic waves from mobile phones or crosstalk from brain waves originating from 

different areas of the brain. In each of these situations the mixed signals are often 

incomprehensible and it is of interest to separate the individual signals when the total number of 

inherent signals are not known to us. No prior information is known about the number of the 

source signals that are present but the Blind Source Separation can be used to separate these 

signals and so the algorithm for independent component analysis fails and we need to come up 

with a modification to the existing algorithm to separate unknown number of sources using a 

fixed number of sensors. A successful separation of mixed signals resulted only when the 

number of signals is same as the number of sensors, by using the time domain algorithms 

proposed by BSS. But, they become inefficient when the number of sources increases then the 

sensors. Thus, in this thesis by working in the frequency domain [27], we have proposed an 

improved source separation approach.  

4.4 Short time source localization and separation 

4.4.1 Basic Assumptions and Principles 

 

As depicted in Chapter 3, a source localization technique using Auto and Cross-

correlation which can only locate the most dominant sound source in a specific frequency band 

at a specific time instance. Since in general the sound signals are arbitrary, the most dominant 
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signals in different frequency bands at different time instances may be different and this offers an 

opportunity for us to separate individual source signals by dividing the time-domain signals into 

many short time segments. In general, the shorter the time segments are, the more accurately the 

variations in the time-domain signals can be captured, but the worse the frequency resolution in 

source separation becomes and this phenomenon is exactly the same as that in short-time Fourier 

transform (STFT). To ensure an optimal resolution for both time and frequency in sources 

localization and separation, a compromise must be made. However, in this study, STFT is 

performed on each time segment, and the resultant spectrum is expressed in the standard octave 

bands where by the time-domain signals are divided into a uniform segment of Dt = 0.1 (sec). 

4.4.2 Fourier Transform 

 

 The Fourier transform is used to convert data from the time domain to the frequency 

domain and the Fourier transform of a signal x (t) can be thought of as a representation of a 

signal in the “frequency domain”; i.e. how much each frequency contributes to the signal. Once 

in the frequency domain, the frequency components can be used to generate the frequency 

spectrum of the signal, which shows the magnitude of each of the frequency components 

calculated by the transformation and indicates the “amount” of each frequency that exists in the 

original waveform. A “spike” in the frequency spectrum corresponds to a dominant presence of 

that frequency in the waveform, while a low value indicates that there is little or none of that 

frequency in the signal. 
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Figure 4.1: Fourier Transform for sine wave 

4.4.3 Short Term Fourier Transform 

 

 A Fourier-related transform used to determine the sinusoidal frequency and phase content 

of local sections of a signal as it changes over time is called the short-time Fourier transform 

(STFT), or alternatively short-term Fourier transform. This is simply described, in the 

continuous-time case, that the function to be transformed is multiplied by a window function 

which is nonzero for only a short period of time. The Fourier transform (a one-dimensional 

function) of the resulting signal is taken as the window is slid along the time axis, resulting in a 

two-dimensional representation of the signal. Mathematically, this is written as: 

    {    }          ∫     
 

  
               (4.1) 

where w(t) is the window function centered around zero, and x(t) is the signal to be transformed. 

X( ,ω) is essentially the Fourier Transform of x(t)w(t- ), a complex function representing the 

phase and magnitude of the signal over time and frequency. The data to be transformed could be 

broken up into chunks or frames (which usually overlap each other) in the discrete time case and 

each chunk is Fourier transformed [29], and the complex result is added to a matrix, which 

records magnitude and phase for each point in time and frequency. This can be 

expressed as: 

    {    }          ∫  [ ]
 

    
             (4.2) 
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 In this case, m is discrete and ω is continuous. Again, the discrete-time index m is 

normally considered to be "slow" time and usually not expressed in as high resolution as time n. 

4.4.4 Window Function 

 

 In signal processing, a window function is a function that is zero-valued outside of some 

chosen interval. For instance, a function that is constant inside the interval and zero elsewhere is 

called a rectangular window, which describes the shape of its graphical representation. When 

another function or a signal (data) is multiplied by a window function, the product is also zero-

valued outside the interval: all that is left is the "view" through the window if we want to analyze 

a long signal in overlapping short sections called “windows”. For example we may want to 

calculate an average spectrum, or to calculate a spectrogram. Unfortunately we cannot simply 

chop the signal into short pieces because this will cause sharp discontinuities at the edges of each 

section. Instead it is preferable to have smooth joins between sections. Example are Hanning, 

Hamming, Gaussian, Rectangular etc. 
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Figure 4.2: Windowing Functions a) Hamming b) Gaussian c) Hanning d) Rectangular Window 
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Figure 4.3: Example showing the working of a window function 

4.4.5 Spectrogram 

 

 The spectrogram is the result of calculating the frequency spectrum or the Fourier 

transform of windowed frames of a compound signal. It is a three dimensional plot of the energy 

of the frequency content of a signal as it changes over time. Spectrograms are used to identify 

phonetic sounds, to analyze the cries of animals, and in the fields of music, sonar, radar, speech 

processing, etc. In the most usual format, the horizontal axis represents time, the vertical axis is 

frequency, and the intensity of each point in the image represents amplitude of a particular 

frequency at a particular time. This function divides a long signal into windows and performs a 

fourier transform on each window, storing complex amplitudes in a table in which the columns 
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represent time and the rows represent frequency. 

4.5 Algorithm for Short time source localization and separation [34] 

 

 

 

Figure 4.4: Flow chart for the short-time SLAS algorithm. 

Figure 4.4 shows the flow chart of this short-time SLAS algorithm. The input data are 

discretized into a uniform short time segment Dt  and the STFT is carried out for each Dt . The 

resultant spectrum is expressed in the standard octave bands and passive SODAR is used to 
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determine the locations of the dominant source in each band. These steps are repeated until 

source localizations in all frequency bands for all time segments are completed. Next, all signals 

in various frequency bands at different time segments that correspond to the same source are 

strung together, which represent the separated signals. These separated signals may be played 

back in which the interfering signals including background noise are minimized. 

                 Theoretically, one may use a much finer resolution in frequency to locate and separate 

source signals. For example, for this short time segment Dt = 0.1, one can get a frequency 

resolution of Df ³1 Dt = 5Hz.
 
However; this will substantially increase the computation time 

because source localization must be carried out over every 5 Hz for every 0.1 second of input 

data. For most applications such a fine resolution in frequency is unnecessary. Therefore in this 

study the standard octave bands over the frequency range of 20 – 20,000 Hz are used.  
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CHAPTER 5 

EXPERIMENTAL VALIDATION OF SOUND SOURCE LOCALIZATION AND 

SEPARATION 

Validation of Sound source localization using Auto-Correlation is conducted with various 

real world sounds in several non-ideal environments. The tests were conducted in Acoustic, 

Vibration, and Noise Control Laboratory (AVNC Lab), Wayne State University. Different types 

of sounds were used through the speakers and were located through the newly developed code. 

Sounds such as music, radio, people talk, clapping etc were used. The experimental validation 

was conducted to compare the results between Cross correlation and Auto correlation results to 

locate single and multiple sources. 

5.1 Experimental validation for six-microphone set   

A prototype based on this technology has been developed and its hardware includes six 

B&K ¼-in condenser microphones, Type 4935,two 4-channel data acquisition units, Type NI-

9234 ,with a maximum sampling rate of 51.2 kS/sper channel one NI-cDAQ9174 chassis, a 

thermometer to measure the air temperature, camera to view the relative positions of located 

sources, and a laptop to control data acquisition and post processing.  
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(a) The array of six microphones used to locate sound sources emitting arbitrarily time-

dependent acoustic signals. 

     

(b) NI 9234 4-channel module  (c)   NI CompactDAQ 4-Slot USB Chassis 

 

Figure 5.1 Prototype device set model. (a) This device consists of six microphones, a web 

camera, a thermometer, and the data acquisition systems. (b) NI-9234 signal acquisition module. 

(c) NI USB chassis. 
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Different types of sounds were tested in the AVNC lab. Initially, only one speaker was 

used in the experiment. Both cross and autocorrelation algorithms were used to locate the sound. 

This procedure was followed by moving the speaker at different places within the camera range. 

The speaker was moved away from the microphones till 3m length and the location results were 

taken. Finally, the results obtained from the algorithms were compared to the benchmark 

locations that were taken prior to the experiment through 3-d digitizer shown below. 

 

 

Figure 5.2: 3D sonic digitizer model 5230XL 
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5.2 Comparison between Cross correlation and Auto correlation: 

As mentioned above, the experiments initially were carried out using one speaker.  

Figure 5.3 (a), (b), (c) and (d) shows the sound source localization in the AVNC lab in 

the Engineering Building, which is a noisy environment. Figure 5.3 (a) illustrates the case of 

locating the noise from a speaker kept at a closer distance to the Microphones, Figure 5.3 (b) 

shows the program locating the noise from the speaker which is kept the extreme left of the 

picture, Figure 5.3 (c) shows the program locating the noise from the speaker which is kept the 

extreme right of the picture, and finally Figure 5.3 (d) shows the locating the noise from the 

speaker which is kept far away.  

 

Figure 5.3 (a): Speaker kept at a closer distance to the Microphones with cross-correlation and 

Auto-correlation results. 
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Figure 5.3 (b): Speaker kept at a left to the Microphones with cross-correlation and Auto-

correlation results. 

 

Figure 5.3 (c): Speaker kept at a right to the Microphones with cross-correlation and Auto-

correlation results. 
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Figure 5.3 (d): Speaker kept far away to the Microphones with cross-correlation and Auto-

correlation results. 

5.3 Error analysis for source localization 

 As mentioned above, source localizations experiments were carried out to compare the 

results between Cross-correlation and Auto-correlation with the results that were taken from 3-d 

digitizer.  

5.3.1 Error analysis of experimental results 

Benchmark locations of the sources were measured by 3D sonic digitizer model 5230XL, 

which is a localization device employing the ultrasonic technologies. The 3D sonic digitizer has 

an ultrasonic gun and a receiver set. One can pinpoint the target with the ultrasonic gun and 

generate ultrasonic sound with it. The receiver recognizes the sounds generated by its producer 

thus can find out the geometry position in 3D space of the target. During the measurement of the 

benchmark location, the ultrasonic gun pinpointed at the center of the loudspeakers or other 
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sound sources, generated ultrasonic sound, and the position can be obtained by the 3D sonic 

digitizer program. For an object within a radius of 4 meters, the error margin of this 3D sonic 

digitizer is ±2.5mm. As the localization error of the 3D digitizer is much less than the expected 

error of the present approach, the location gained by 3D digitizer can be considered as 

benchmark position. 

The error in the localization can be calculated  using Equation (3.42). Table below shows 

the localization results and error from Cross-correlation and Auto-correlation results. 

Table 5.1: Comparison between Cross and Auto-correlation 

 

 

It can be observed from above table that the error reduced up to 50% when Auto-

correlation algorithms were used to locate the source compared to Cross-correlation algorithms.  

 

It is shown in the graph below: 

                   3-d Digitizer               Cross- Correlation  Error                  Auto-Correlation Error

X Y Z X Y Z % X Y Z %

-0.039 1.278 -0.07 0.0328 1.2554 -0.0576 1.824352 0.036 1.266 -0.064 0.966952

0.601 1.371 -0.075 0.5012 1.36 -0.054 3.2293 0.533 1.364 -0.065 2.19778

-0.455 1.7 -0.08 -0.404 1.581 -0.062 7.304208 -0.448 1.645 -0.069 3.141659

0.13 2.05 -0.09 0.095 1.9 -0.049 7.445402 0.122 1.983 -0.067 3.317452

0.19 2.601 -0.09 0.34 2.2 -0.038 14.6788 0.155 2.405 -0.052 7.623439

1.301 2.85 -0.095 0.45 2.3 -0.045 25.21438 0.195 2.721 -0.068 12.93796

0.506 3.45 -0.09 0.35 2.425 -0.026 29.75298 0.211 2.984 -0.039 14.23038
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Figure 5.4: Comparison between Cross-correlation and Auto-correlation 

As discussed in Chapter-3, Cross-correlation takes the maximum peak for TDOA 

estimation and Auto-correlation uses the exact peak for TDOA estimation. Although, cross 

correlation gives accurate results in many cases, but in case where there are many reflections and 

reverberations, Auto-correlation functions are very useful in calculation TDOA.  

Once we locate the sources, next step is to separate target source from mixed signals. As 

discussed in Chapter-4, source separation has always been important field of research and there 

are many techniques that can be used for the same. In this thesis, we have developed a new 

technology where the sources are separated using frequency bands. The technique known as 

Short time source localization and separation (SLAS) uses the results from source localization. 

Initially, the mixed signals are divided into different frequency bands and then the localization 

results are used to separate the target sources which are present in different frequency bands. 
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5.4 Experimental validation for Source separation: 

 As mentioned above, sources are separated in the frequency bands using SLAS 

technique. In this thesis, different kinds of mixed signals were played and were separated. 

Figure 5.5 (a), (b), (c) (d) shows the results that were conducted in AVNC lab, Wayne State 

University. The mixed signal of Man talking, Radio and White-noise was used to locate and 

separate all three sources. Figure 5.5 (a) shows localization results of Man and two speakers 

which were used to play Radio and White noise, Figure 5.5 (b) shows the time-domain and 

Spectrogram for the original mixed signal, Figure 5.5 (c) shows the time-domain and 

Spectrogram for the separated Man’s Voice, Figure 5.5 (d) shows the time-domain and 

Spectrogram for the separated Radio Sound and finally Figure 5.5 (e) is the time-domain and 

spectrogram graph for separated White noise. 

 

Figure 5.5(a):  The dominant sound sources of a man’s voice, white noise , and radio sound were 

captured by passive SODAR. 
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Figure 5.5 (b): The time-domain signals and corresponding spectrogram of the Mixed Signal 

 

 
Figure 5.5 (c): The time-domain signals and corresponding spectrogram of the separated Man’s 

Voice 

 



www.manaraa.com

41 
 

 
 

 

Figure 5.5 (d): The time-domain signals and corresponding spectrogram of the separated Radio 

Voice 

 

Figure 5.5 (e): The time-domain signals and corresponding spectrogram of the separated White 

Noise 
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In second case, the mixed signal of Man talking, Clapping and White-noise was used to locate 

and separate all three sources. Figure 5.6 (a) shows localization results of two Men and a speaker 

which was used for white noise, Figure 5.6 (b) shows the time-domain and Spectrogram for the 

original mixed signal, Figure 5.6 (c) shows the time-domain and Spectrogram for the separated 

Man’s Voice, Figure 5.6 (d) shows the time-domain and Spectrogram for the separated Clapping 

sound and finally Figure 5.6 (e) is the time-domain and spectrogram graph for separated White 

noise. 

 

Figure 5.6(a):  The dominant sound sources of a man’s voice, white noise, and clapping sound 

were captured by passive SODAR. 
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Figure 5.6 (b): The time-domain signals and corresponding spectrogram of the Mixed Signal 

 

Figure 5.6 (c): The time-domain signals and corresponding spectrogram of the separated Man’s 

Voice 
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Figure 5.6 (d): The time-domain signals and corresponding spectrogram of the separated Clap 

sound 

 

Figure 5.6 (e): The time-domain signals and corresponding spectrogram of the separated White 

Noise 
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And finally, mixed signal used for third case has Man talking, Music, Siren and  White-noise 

was used to locate and separate all four sources. Figure 5.7 (a) shows localization results of a 

Man and 3 speakers used for Music, Siren and White noise, Figure 5.7 (b) shows the time-

domain and Spectrogram for the original mixed signal, Figure 5.7 (c) shows the time-domain and 

Spectrogram for the separated Man’s Voice, Figure 5.7 (d)  shows the time-domain and 

Spectrogram for the separated Music sound ,Figure 5.7 (e) is the time-domain and spectrogram 

graph for separated Siren sound and finally,. Figure 5.7 (f) is the time-domain and spectrogram 

graph for separated White Noise. 

 

Figure 5.7(a):  The dominant sound sources of a man’s voice, music, white noise and siren sound 

were captured by passive SODAR. 
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Figure 5.7 (b): The time-domain signals and corresponding spectrogram of the Mixed Signal 

 

Figure 5.7 (c): The time-domain signals and corresponding spectrogram of the separated Man’s 

Voice 
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Figure 5.7 (d): The time-domain signals and corresponding spectrogram of the separated Music 

 

Figure 5.7 (e): The time-domain signals and corresponding spectrogram of the separated Siren 

sound 
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Figure 5.7 (e): The time-domain signals and corresponding spectrogram of the separated White 

Noise 

Note that experimental results have demonstrated that the finer the discretization in time 

record Dt is, the better the source separation results become. Likewise, the finer the 

discretization in frequency bands is, the better and more complete the separated signals may be. 

This is because as Dt  reduces, the distinctions between individual acoustic signals become more 

apparent, making it easier for the source separation. Likewise, further reducing the bandwidth in 

frequencies will greatly enhance sources separations.  
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CHAPTER 6 

 

CONCLUSIONS 

 

In this thesis, we have presented an innovative idea of Source Localization by using 

newly developed Auto-Correlation function. Sound separation using a Signal processing 

technique is also studied. 

Some source localization methods were discussed in the early chapters and also various 

parameters involved in Time difference of arrival calculation using Cross-correlation and Auto-

correlation were discussed in some detail.  

We first discussed about Cross-correlation method to find TDOA and then new 

formulations using Auto-correlation functions were discussed. This included estimation of 

TDOA, counting the number of multi-paths and arrival time in both cross and auto-correlation 

functions.  

Another innovative technology was discussed to extract the target signal from directly 

measured mixed signals. A new technology known as Short time source localization and 

separation (SLAS) was presented in this thesis. Various parameters like Fourier transform, Short 

time Fourier transform, Window functions were discussed. 

Finally we validated all the newly developed technology by comparing the source 

localization results between Cross and Auto-correlation functions. Results demonstrated that the 

error in source localization was reduced by 50 % in case of Auto-correlation functions.  

We then used SLAS technique to separate the target signals from directly measured 

acoustic signals. The tests were carried out in AVNC lab, Wayne state university. Three cases 
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were studied and the time-domain graphs and Spectrogram of both, mixed signals and separated 

signals were presented. 

The passive SODAR [30] and short-time SLAS algorithms were used to perform 

completely blind sources localization and separation in a highly non-ideal environment. The 

accuracy in blind source separations can be further improved by decreasing the time segment Dt  

and using a much finer user-defined frequency band than the standard octave bands. The 

proposed method could potentially have a significant impact on a number of sectors, including 

the Homeland Security, defense industries, and manufacturing industries to identify products 

noise problems as well as improving the product quality issues. 
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CHAPTER 7 

 

FUTURE WORK 

 

The research performed in this thesis on source localization and separation has produced 

satisfactory results. However, there is much room for further improvements both theoretically 

and experimentally.  

The auto-correlation functions have to be tested with source kept far away from the 

micro-phones (greater than 3m). This requires some mathematical formulations to be developed 

in order to achieve accurate results. 

The SLAS technique has been tested to work well in case of speech signals but no 

concrete tests have been performed with the acoustic signals from the automobiles or the 

machines operating in the industry. Some testing needs to be performed at that end and 

parametric studies need to be taken care in case of mechanical signals. 

Lastly, some of the signal processing techniques needs to be used in order to get more 

refined separated signals. 
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ABSTRACT 

DEVELOPING A SYSTEM FOR BLIND ACOUSTIC SOURCE LOCALIZATION AND 

SEPARATION 

 

by 

RAGHAVENDRA KULKARNI 

August 2013 

Advisor: Dr. Sean F. Wu 

Major: Mechanical Engineering 

Degree: Master of Science 

 

This thesis presents innovate methodologies for locating, extracting, and separating 

multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time 

reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory 

structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based 

method is developed for locating arbitrary and incoherent sound sources in 3D space in real time 

by using a minimal number of microphones, and the Point Source Separation (PSS) method is 

developed for extracting target signals from directly measured mixed signals. Combining these 

two approaches leads to a novel technology known as Blind Sources Localization and Separation 

(BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate 

original individual sources simultaneously, based on the directly measured mixed signals. These 

technologies have been validated through numerical simulations and experiments conducted in 

various non-ideal environments where there are non-negligible, unspecified sound reflections 

and reverberation as well as interferences from random background noise. Another innovation 

presented in this thesis is concerned with applications of the TR algorithm to pinpoint the exact 
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locations of hyper-active neurons in the brain auditory structure that are directly correlated to the 

tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization 

results provided by the TR algorithm. Results demonstrate that the spatial resolution of this 

source localization can be as high as the micrometer level. This high precision localization may 

lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective 

treatment for tinnitus than any of the existing ones. 
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